THE JOURNAL OF ANTIBIOTICS

SYNTHESES OF 5-*O*-[2-*O*- AND 3-*O*-(6-AMINO-6-DEOXY-β-L-IDOPYRANOSYL)-β-D-RIBOFURANOSYL]-1-*N*-[(*S*)-4-AMINO-2-HYDROXYBUTANOYL]-3'-DEOXYPAROMAMINE

TAKAHIRO TORII, TSUTOMU TSUCHIYA and SUMIO UMEZAWA

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki, 211 Japan

(Received for publication September 2, 1981)

Synthesis and antibacterial activities of the title compounds are described.

Recently we have prepared¹⁾ two lividomycin B analogues which contain 6-amino-6-deoxy- β -L-idopyranose instead of 2,6-diamino-2,6-dideoxy- β -L-idopyranose of lividomycin B (1), and, it was observed that the 3''-O-glycoside analog (3) had weaker antibacterial activity than lividomycin B while the position isomer, 2''-O-glycoside analog (2), was less active than 3 (see Table 1). It was further observed that the presence of the 2'''-amino group on lividomycin B has a potent influence on its antibacterial activity. This paper describes the syntheses of 1-*N*-[(*S*)-4-amino-2-hydroxybutanoyl] derivatives (10, 11) of 2 and 3 in order to see the effect of the aminoacyl residue for the antibacterial activity of 2 and 3. The side chain residue is well-known for enhancing the activities of parent aminoglycoside antibiotics as exemplified by butirosins²⁾ and amikacin³⁾.

As the key intermediates for the syntheses of **10** and **11**, we utilized $5-O-[2-O^{-1})$ (4) and $3-O-(6-azido-2,3,4-tri-O-benzyl-6-deoxy-<math>\beta$ -L-idopyranosyl) -5-O-benzoyl- β -D-ribofuranosyl] - 4',6' -di-O-benzoyl- 3,2'bis(N-benzyloxycarbonyl)-1-N: 6-O-carbonyl-3'-deoxyparomamine¹⁾ (5). Treatment of **4** and **5** in a basic medium selectively cleaved the benzoyl and the 1,6-carbamate groups to give ninhydrin-positive derivatives (**6** and **7**), respectively, having 1-amino groups free. Coupling of the active ester of (S)-4-

Fig. 1.

benzyloxycarbonylamino-2-hydroxybutanoic acid³⁾ to the 1-amino groups of **6** and **7** was successfully carried out in tetrahydrofuran to give the corresponding 1-*N*-acyl derivatives (**8** and **9**). Finally, treatment of the derivatives with sodium metal in liquid ammonia (-50° C) simultaneously cleaved the benzyl and the benzyloxycarbonyl groups and reduced the azido into an amino group to give the desired 1-*N*-acyl derivatives (**10** and **11**, respectively).

Antibacterial spectra of 10 and 11 are shown in Table 1 with those of 2, 3, and lividomycin B (1). The results show that the introduction of (S)-4-amino-2-hydroxybutanoyl residue to the 1-amino group of 3 improves the activity of the parent antibiotic (3). It is noteworthy that 11 possesses activity against resistant strains having 5''-O-phosphorylating enzyme, whereas the isomer (10) having the aminoacyl residue attached at the 1-amino group of the 2''-O-glycosyl isomer (2) shows marked deterioration in the activity.

Experimental

¹H NMR spectra were recorded at 90 MHz with a Varian EM-390 spectrometer. Thin-layer chromatography (TLC) was carried out on DC-Fertigplatten Kieselgel 60 F_{254} (E. Merck). For column chromatography, silica gel (Wakogel C-200) was used.

Test organisms ^{a)}	MIC (mcg/ml)				
	1	2	3	10	11
Staphylococcus aureus FDA 209P	0.39	6.25	3.12	100	3.12
Micrococcus luteus PCI 1001	12.5	>100	50	>100	100
Bacillus subtilis NRRL B558	<0.2	0.78	<0.2	3.12	<0.2
Klebsiella pneumoniae PCI 602	0.78	6.25	1.56	50	1.56
Salmonella typhi T-63	3.12	12.5	6.25	100	3.12
Escherichia coli NIHJ	1.56	12.5	3.12	100	3.12
E. coli K-12	3.12	50	12.5	>100	6.25
<i>E. coli</i> K-12 R5	3.12	50	12.5	>100	12.5
<i>E. coli</i> K-12 ML1629°)	>100	>100	>100	>100	6.25
E. coli K-12 ML1410 R81°)	>100	>100	>100	>100	12.5
E. coli LA290 R55	3.12	25	6.25	>100	12.5
E. coli C600 R135	3.12	25	6.25	100	6.25
E. coli W677	1.56	25	3.12	100	6.25
<i>E. coli</i> JR66/W677	6.25	50	25	100	12.5
Pseudomonas aeruginosa A3	12.5	100	50	>100	100
Ps. aeruginosa No. 12	12.5	100	50	>100	50
Ps. aeruginosa TI13	12.5	100	50	>100	25
Ps. aeruginosa 99	25	100	100	>100	>100
Ps. aeruginosa GN315	25	>100	>100	>100	25
Mycobacterium smegmatis 607b)	0.39	3.12	6.25	100	1.56

Table 1. Antibacterial spectra of lividomycin B (1), 2, 3, 10, and 11.

^{a)} Agar dilution streak method (nutrient agar, 10⁸ CFU/ml, 37°C, 18 hours).

^{b)} 48 hours.

e) Resistant strain having the enzyme phosphorylating 3'- and 5''-hydroxyl groups.

 $\frac{5-O-[2-O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-\beta-L-idopyranosyl)-\beta-D-ribofuranosyl]-3,2'-bis(N-benzyloxycarbonyl)-3'-deoxyparomamine (6)$

To a solution of **4** (349 mg) in dioxane (20 ml) was added 0.025 M barium hydroxide solution (5 ml) at hourly intervals (totally 20 ml) and the solution was kept at 60°C for 4 hours in total. After introduction of carbon dioxide, followed by filtration, the solution was concentrated. The residue was chromatographed on a silica gel column with chloroform - methanol - triethylamine (6: 1: 0.01) to give a ninhydrin-positive solid of **6**, 185 mg (67% as hemicarbonate), $[\alpha]_{D}^{28} + 48^{\circ}$ (*c* 1, chloroform); Rf 0.52 (TLC with chloroform - methanol - triethylamine=6: 1: 0.01); IR(KBr): 1530, 1700, 2100 cm⁻¹ (N₃): 1760 cm⁻¹ (cyclic carbamate) observed in **4** had disappeared.

 $\frac{5-O-[3-O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-\beta-L-idopyranosyl)-\beta-D-ribofuranosyl]-3,2'-bis (N-benzyloxycarbonyl)-3'-deoxyparomamine (7)$

Compound **5** (205 mg) was treated similarly as described for **6** to give **7**, 101 mg (62% as hemicarbonate), $[\alpha]_{D}^{26} + 44^{\circ}$ (*c* 1, chloroform); Rf 0.50 (TLC with the same solvent system described for **6**); IR (KBr): 1530, 1700, 2100 cm⁻¹.

 $5-O-[2-O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-\beta-L-idopyranosyl) - \beta-D-ribofuranosyl] - 3,2'-bis (N-benzyloxycarbonyl)-1-N-[(S)-4-benzyloxycarbonylamino-2-hydroxybutanoyl]-3'-deoxyparomamine (8)$

A mixture of (S)-4-benzyloxycarbonylamino-2-hydroxybutanoic acid³⁾ (75 mg), *N*-hydroxysuccinimide (35 mg) and dicyclohexylcarbodiimide (65 mg) in tetrahydrofuran (3 ml) was stirred for 1 hour in an ice-bath. To the mixture, a solution of **6** (120 mg) in tetrahydrofuran (3 ml) containing triethylamine (0.2 ml) was added and the mixture was stirred for further 2 hours at ice-bath temperature. After filteration, the solution was concentrated and the residue was chromatographed on a silica gel column (20 g) with chloroform (50 ml), then with chloroform - methanol (20: 1) as developer. Since the product (8) obtained (130 mg) still contained slight amounts of impurities having similar mobilities, it was subjected to preparative TLC with chloroform - methanol - triethylamine (6: 1: 0.01) to give pure solid of 8, 104 mg (74%), $[\alpha]_{20}^{28}+28^{\circ}$ (c 1, chloroform): Rf 0.63 (TLC with the solvent system described for 6).

Anal. Calcd. for $C_{72}H_{85}N_7O_{22}$: C 61.76, H 6.08, N 7.01%. Found: C 61.70, H 6.12, N 6.82%.

 $\frac{5-O-[3-O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-\beta-L-idopyranosyl)-\beta-D-ribofuranosyl]-3,2'-bis(N-benzyloxycarbonyl)-1-N-[(S)-4-benzyloxycarbonylamino-2-hydroxybutanoyl]-3'-deoxyparomamine (9)$

Compound 7 (90 mg) was treated similarly as described for 8 to give 9, 72 mg (68 %), $[\alpha]_{\rm D}^{\rm ge} + 26^{\circ}$ (*c* 1, chloroform); Rf 0.61 (TLC with the same solvent system described for 6).

5-*O*-[2-*O*-[6-Amino-6-deoxy- β -L-idopyranosyl)- β -D-ribofuranosyl]-1-*N*-[(*S*)-4-amino-2-hydroxy-butanoyl]-3'-deoxyparomamine (10)

A solution of **8** (86 mg) in tetrahydrofuran (1.5 ml) was added to a solution of sodium metal (*ca.* 200 mg) in liquid ammonia (*ca.* 5 ml, -50° C) and the deep-blue solution was kept at the temperature for 1 hour. Addition of water until the solution became colorless, followed by gradual warming to room temperature, and evaporation under diminished pressure, gave a residue. An aqueous solution of the residue was poured onto a column of Dowex 50W × 2 (NH₄⁺) resin, and the column was washed with water, then eluted with 2 M aqueous ammonia. Ninhydrin-positive fractions were collected and evaporated. The residue was chromatographed on a column of CM-Sephadex C-25 (NH₄⁺) with aqueous ammonia ($0 \rightarrow 0.5$ M, gradually changed) to give a solid of **10**, 26 mg (50% as dicarbonate monohydrate), $[\alpha]_{10}^{20} + 44^{\circ}$ (*c* 1, water); Rf_{11v1domye1n B} 0.38 (*n*-butanol - pyridine - water - acetic acid=6:4:3:1); ¹H NMR (D₂O): δ 5.20 (1H d, $J_{1''',2'''} \simeq 1.5$ Hz, H-1''), 5.50 (1H slightly br. s, H-1''), 5.67 (1H d, $J_{1',2'} = 3.5$ Hz, H-1').

Anal. Calcd. for $C_{27}H_{51}N_5O_{10} \cdot 2H_2CO_3 \cdot H_2O$: C 41.28, H 6.76, N 8.30%. Found: C 41.43, H 6.82, N 8.37%.

 $\frac{5-O-[3-O-(6-\text{Amino-6-deoxy-}\beta-\text{L-idopyranosyl})-\beta-\text{D-ribofuranosyl}]-1-N-[(S)-4-\text{amino-2-hydroxy-butanoyl}]-3'-deoxyparomamine (11)$

Compound **9** (50 mg) was treated similarly as described for **10** to give a solid of **11**, 15 mg (55% as hemicarbonate- $\frac{3}{2}$ hydrate), $[\alpha]_{D}^{se}$ +40° (*c* 0.9, water); Rf_{11vidomycin B} 0.57 (*n*-butanol - pyridine - water - acetic acid=6: 4: 3: 1); IR(KBr): 1560, 1640 cm⁻¹; ¹H NMR (D₂O): δ 5.00 (1H d, $J_{1''',2'''} \simeq 1.5$ Hz, H-1'''), ~5.4 (2H, H-1', 1'').

Anal. Calcd. for $C_{27}H_{51}O_{18} \cdot \frac{1}{2}H_2CO_3 \cdot \frac{3}{2}H_2O$: C 43.48, H 7.25, N 9.22%. Found: C 43.27, H 7.14, N 9.17%.

References

- TORII, T.; T. TSUCHIYA, I. WATANABE & S. UMEZAWA: Syntheses of lividomycin B analogues, 5-O-[3-O-(6-amino-6-deoxy-β-L-idopyranosyl)-β-D-ribofuranosyl]-3'-deoxyparomamine and 5-O-[2-O-(6-amino-6-deoxy-β-L-idopyranosyl)-β-D-ribofuranosyl]-3'-deoxyparomamine. Bull. Chem. Soc. Jpn. in press
- Woo, P. W. K.; H. W. DION & Q. R. BARTZ: Butirosins A and B, aminoglycoside antibiotics. I. Structural units. Tetrahedron Lett. 1971: 2617~2620, 1971; III. Structure, *ibid*. 1971: 2625~2628, 1971
- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972